Abstract
This paper introduces an optimal sizing method for a catenary-free tram, in which both on-board energy storage systems and charging infrastructures are considered. To quantitatively analyze the trade-off between available charging time and economic operation, a daily cost function containing a whole life-time cost of energy storage and an expense of energy supplies is formulated for the optimal sizing problem. A mixed particle swarm optimization algorithm is utilized to find optimal solutions for three schemes: (1) ultracapacitors storage systems with fast-charging at each station; (2) battery storage systems with slow-charging at starting and final stations; (3) battery storage systems with fast-swapping at swapping station. A case study on an existing catenary-free tramline in China is applied to verify the effectiveness of the proposed method. Results show that a daily-cost reduction over 30% and a weight reduction over 40% can be achieved by scheme 2, and a cost saving of 34.23% and a weight reduction of 32.46% can be obtained by scheme 3.
Original language | English |
---|---|
Article number | 6227 |
Journal | Energies |
Volume | 13 |
Issue number | 23 |
DOIs | |
Publication status | Published - 1 Dec 2020 |
Keywords
- Catenary-free tram
- Charging infrastructure
- Economic operation
- On-board energy storage system
- Optimal sizing