Optimal impact time and angle control guidance with limited speed

Wang Yijing, Song Tao*, Tao Hong, Dou Denghui, Xu Chao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper proposes a three-dimensional (3-D) impact time and angle control guidance (ITACG) considering the limit of vehicle's speed to realize the spatio-temporal interception against a moving target. Firstly, a relative coordinate system with its origin attached on the target is constructed, based on which the engagement kinematics is formulated. Then, the guidance law is designed based on the prediction-correction concept in the reference frame, naturally decoupling into normal and tangential directions for impact angle and time constraint, respectively. In the normal channel, the final impact angle of PN guidance is predicted, and then the deviation between the predicted and expected angle is eliminated by leveraging the optimal control theory. Simultaneous strike is guaranteed from transforming the predetermined attack time to the desired relative velocity considering the speed limit. Employing the principles of the optimal control theory, the optimal analytical solutions for both normal and tangential control are derived. In addition, the allowed impact time that considers the vehicle’s speed limit is calculated to judge whether the desired attack time is feasible. The proposed guidance law is proved its feasibility and effectiveness by numerical simulation and comparison in various engagements.

Original languageEnglish
Title of host publicationFirst Aerospace Frontiers Conference, AFC 2024
EditorsHan Zhang
PublisherSPIE
ISBN (Electronic)9781510681613
DOIs
Publication statusPublished - 2024
Event1st Aerospace Frontiers Conference, AFC 2024 - Xi'an, China
Duration: 12 Apr 202415 Apr 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13218
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference1st Aerospace Frontiers Conference, AFC 2024
Country/TerritoryChina
CityXi'an
Period12/04/2415/04/24

Keywords

  • impact angle
  • impact time
  • moving target
  • optimal control
  • velocity constraint

Fingerprint

Dive into the research topics of 'Optimal impact time and angle control guidance with limited speed'. Together they form a unique fingerprint.

Cite this