Abstract
The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures. Curved structure can support the external loads effectively by virtue of their spatial curvature. In review of the excellent energy absorption property of auxetic structure, employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance. In this study, a novel cylindrical sandwich panel with double arrow auxetic (DAA) core was designed and the numerical model was built by ABAQUS. Due to the complexity of the structure, systematic parameter study and optimal design are conducted. Two cases of optimal design were considered, case1 focuses on reducing the deflection and mass of the structure, while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass. Parameter study and optimal design were conducted based on Latin Hypercube Sampling (LHD) method, artificial neural networks (ANN) metamodel and the nondominated sorting genetic algorithm (NSGA-Ⅱ). The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity. Optimization results can be used as a reference for different applications.
Original language | English |
---|---|
Pages (from-to) | 617-626 |
Number of pages | 10 |
Journal | Defence Technology |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2020 |
Keywords
- Auxetic structure
- Blast response
- Finite element analysis (FEA)
- Optimal design