TY - JOUR
T1 - Optical receiving system based on a compound parabolic concentrator and a hemispherical lens for visible light communication
AU - Wang, Yun
AU - Lan, Tian
AU - Ni, Guoqiang
N1 - Publisher Copyright:
© 2016 Optical Society of America.
PY - 2016/12/20
Y1 - 2016/12/20
N2 - We propose a scheme for designing a new optical receiving system that can reduce the received-energy spot size via integration of a compound parabolic concentrator with a hemispherical lens. SolidWorks is used to model the receiving system, while TracePro is employed for simulations. The field of view is set to 30° and the radius of the compound parabolic concentrator outlet is 5 mm, which is also the radius of the hemispherical lens. Ray-tracing results show that under the given simulation conditions, the radius of the spot area is reduced from 5 to 3 mm at the receiving system and the gain is 5.2. In regard to the relations between received power and the radius of the hemispherical lens R, and the received power and the distance d between the compound parabolic concentrator and hemispherical lens, our detailed analysis yields the following characteristics: (1) the received power increases as R increases, but decreases as d increases; (2) as R increases, the spot area increases and the received flux is dispersed over the receiving plane, which dispersion is disadvantageous for high-speed communication; (3) the gain of the receiving system also varies with R and d; (4) an increase in d leads to decrease in the received flux and gain when d > -2 mm. Based on these characteristics, we set R = 5 mm and calculate the energy efficiency. We obtain maximum energy efficiencies for different detection areas.
AB - We propose a scheme for designing a new optical receiving system that can reduce the received-energy spot size via integration of a compound parabolic concentrator with a hemispherical lens. SolidWorks is used to model the receiving system, while TracePro is employed for simulations. The field of view is set to 30° and the radius of the compound parabolic concentrator outlet is 5 mm, which is also the radius of the hemispherical lens. Ray-tracing results show that under the given simulation conditions, the radius of the spot area is reduced from 5 to 3 mm at the receiving system and the gain is 5.2. In regard to the relations between received power and the radius of the hemispherical lens R, and the received power and the distance d between the compound parabolic concentrator and hemispherical lens, our detailed analysis yields the following characteristics: (1) the received power increases as R increases, but decreases as d increases; (2) as R increases, the spot area increases and the received flux is dispersed over the receiving plane, which dispersion is disadvantageous for high-speed communication; (3) the gain of the receiving system also varies with R and d; (4) an increase in d leads to decrease in the received flux and gain when d > -2 mm. Based on these characteristics, we set R = 5 mm and calculate the energy efficiency. We obtain maximum energy efficiencies for different detection areas.
UR - http://www.scopus.com/inward/record.url?scp=85009290213&partnerID=8YFLogxK
U2 - 10.1364/AO.55.010229
DO - 10.1364/AO.55.010229
M3 - Article
AN - SCOPUS:85009290213
SN - 1559-128X
VL - 55
SP - 10229
EP - 10238
JO - Applied Optics
JF - Applied Optics
IS - 36
ER -