Optical-digital joint optimization enables advanced specifications freeform imaging system design

Huiming Xu, Tong Yang*, Dewen Cheng, Yongtian Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent years, the use of freeform optical surfaces in optical system design has experienced a significant increase, allowing systems to achieve a larger field-of-view and/or a smaller F-number. Despite these advancements, further expansion of the field-of-view or aperture size continues to pose a considerable challenge. Simultaneously, the field of computer vision has witnessed remarkable progress in deep learning, resulting in the development of numerous image recovery networks capable of converting blurred images into clear ones. In this study, we demonstrate the design of off-axis freeform imaging systems that combines geometrical optical design and image recovery network training. By using the joint optimization process, we can obtain high-quality images at advanced system specifications, which can be hardly realized by traditional freeform systems. We present a freeform three-mirror imaging system as a design example that highlights the feasibility and potential benefits of our proposed method. Zernike polynomials surface with an off-axis base conic is taken as the freeform surface type, using which the surface testing difficulty can be controlled easily and efficiently. Differential ray tracing, image simulation and recovery, and loss function establishment are demonstrated. Using the proposed method, freeform system design with increased field-of-view and entrance pupil size as well as good image recovery results can be realized. The proposed method can also be extended in the design of off-axis imaging systems consisting phase elements such as holographic optical element and metasurface.

Original languageEnglish
Title of host publicationOptical Design and Testing XIII
EditorsYongtian Wang, Tina E. Kidger, Rengmao Wu
PublisherSPIE
ISBN (Electronic)9781510667792
DOIs
Publication statusPublished - 2023
EventOptical Design and Testing XIII 2023 - Beijing, China
Duration: 14 Oct 202315 Oct 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12765
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptical Design and Testing XIII 2023
Country/TerritoryChina
CityBeijing
Period14/10/2315/10/23

Keywords

  • advanced system specifications
  • image recovery network
  • joint design
  • references freeform imaging systems

Fingerprint

Dive into the research topics of 'Optical-digital joint optimization enables advanced specifications freeform imaging system design'. Together they form a unique fingerprint.

Cite this