One-step Predictive Encoder - Gaussian Segment Model for Time Series Anomaly Detection

Jiachen Zhao, Yongling Li, Haibo He, Fang Deng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Unsupervised anomaly detection for time series is of great importance for various applications, such as Web monitoring, medical monitoring, and device fault diagnosis. Time series anomaly detection (TSAD) aims to find the observations that most different from others in a sequence of observations. With the development of deep learning, deep-autoencoder-based methods achieve state-of-the-art performance. These methods are usually able to find single anomaly points but fail to detect the anomaly segment and the change point. To tackle this problem, this paper proposes a novel TSAD method, which consists of a bidirectional LSTM (BiLSTM) autoencoder and a subsequent Gaussian segmentation model. BiLSTM encodes a time series in a predictive format from both positive and negative time directions, then outputs the latent feature vectors and restructured errors. After that, the latent features are used to find anomaly segments by the Gaussian segment model; the restructured errors are used to find change points and extreme single anomaly by a scoring function. In this way, our method can find all three kinds of anomaly points. Experiments on two real-world datasets demonstrate the effectiveness of the proposed method.

Original languageEnglish
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
Publication statusPublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: 19 Jul 202024 Jul 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period19/07/2024/07/20

Keywords

  • Time series
  • anomaly detection
  • change point detection
  • deep learning

Fingerprint

Dive into the research topics of 'One-step Predictive Encoder - Gaussian Segment Model for Time Series Anomaly Detection'. Together they form a unique fingerprint.

Cite this