TY - GEN
T1 - One-shot neural architecture search via novelty driven sampling
AU - Zhang, Miao
AU - Li, Huiqi
AU - Pan, Shirui
AU - Liu, Taoping
AU - Su, Steven
N1 - Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
PY - 2020
Y1 - 2020
N2 - One-Shot Neural architecture search (NAS) has received wide attentions due to its computational efficiency. Most state-of-the-art One-Shot NAS methods use the validation accuracy based on inheriting weights from the supernet as the stepping stone to search for the best performing architecture, adopting a bilevel optimization pattern with assuming this validation accuracy approximates to the test accuracy after re-training. However, recent works have found that there is no positive correlation between the above validation accuracy and test accuracy for these One-Shot NAS methods, and this reward based sampling for supernet training also entails the rich-get-richer problem. To handle this deceptive problem, this paper presents a new approach, Efficient Novelty-driven Neural Architecture Search, to sample the most abnormal architecture to train the supernet. Specifically, a single-path supernet is adopted, and only the weights of a single architecture sampled by our novelty search are optimized in each step to reduce the memory demand greatly. Experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method.
AB - One-Shot Neural architecture search (NAS) has received wide attentions due to its computational efficiency. Most state-of-the-art One-Shot NAS methods use the validation accuracy based on inheriting weights from the supernet as the stepping stone to search for the best performing architecture, adopting a bilevel optimization pattern with assuming this validation accuracy approximates to the test accuracy after re-training. However, recent works have found that there is no positive correlation between the above validation accuracy and test accuracy for these One-Shot NAS methods, and this reward based sampling for supernet training also entails the rich-get-richer problem. To handle this deceptive problem, this paper presents a new approach, Efficient Novelty-driven Neural Architecture Search, to sample the most abnormal architecture to train the supernet. Specifically, a single-path supernet is adopted, and only the weights of a single architecture sampled by our novelty search are optimized in each step to reduce the memory demand greatly. Experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method.
UR - http://www.scopus.com/inward/record.url?scp=85095517536&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85095517536
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 3188
EP - 3194
BT - Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
A2 - Bessiere, Christian
PB - International Joint Conferences on Artificial Intelligence
T2 - 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Y2 - 1 January 2021
ER -