On stochastic evolution equations with non-lipschitz coefficients

Xicheng Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

In this paper, we study the existence and uniqueness of solutions for several classes of stochastic evolution equations with non-Lipschitz coefficients, that contains backward stochastic evolution equations, stochastic Volterra type evolution equations and stochastic functional evolution equations. In particular, the results can be used to treat a large class of quasi-linear stochastic equations, which includes the reaction diffusion and porous medium equations.

Original languageEnglish
Pages (from-to)549-595
Number of pages47
JournalStochastics and Dynamics
Volume9
Issue number4
DOIs
Publication statusPublished - Dec 2009
Externally publishedYes

Keywords

  • Backward stochastic evolution equation
  • Stochastic evolution equation
  • Stochastic functional integral evolution equation
  • Stochastic porous medium equation
  • Stochastic reaction diffusion equation

Fingerprint

Dive into the research topics of 'On stochastic evolution equations with non-lipschitz coefficients'. Together they form a unique fingerprint.

Cite this