Abstract
To improve thermal barrier applications in advanced vehicle engines, a novel Fe-based amorphous composite coating was designed by introducing ceramic oxides and was prepared by atmospheric plasma spraying (APS). The microstructure and related properties of the as-deposited coating were investigated in detail. The composite coating comprises a well-formed FeCrNbBSi amorphous metallic matrix and dispersed yttria-stabilized zirconia (YSZ) splats. A unique Si-oxide interfacial layer with a thickness of several nanometers and an amorphous structure forms between the metallic matrix and ceramic phase, which is attributed to a combination of multiple effects. The composite coating displays extremely low thermal conductivity from 2.28 W/mK at 100 °C to 3.36 W/mK at 600 °C and can increase the surface temperature of the piston crown by 18.93 °C, which implies a significant means of enhancing the power efficiency. The improved thermal barrier ability of the composite coating is revealed as the crucial effect of the Si-oxide interfacial layer, which induces an increased interfacial thermal resistance. The fracture toughness of the composite coating remains at 3.40 MPa·m1/2, comparable to that of the monolithic amorphous coating, 3.74 MPa·m1/2, which is closely related to the formation of a Si-oxide layer and its nanoscale thickness. Therefore, the Fe-based amorphous composite coating developed here demonstrates great potential as an innovative metal-based thermal barrier coating for application in vehicle engines and provides specific inspiration for future works exploring the interfacial engineering of coating.
Original language | English |
---|---|
Pages (from-to) | 23057-23066 |
Number of pages | 10 |
Journal | ACS applied materials & interfaces |
Volume | 13 |
Issue number | 19 |
DOIs | |
Publication status | Published - 19 May 2021 |
Keywords
- Fe-based amorphous alloy
- composite coating
- fracture toughness
- interfacial layer
- thermal conductivity