Nonlinearity-Based Ranging Technique in SC-FDE Communication System With Oversampled Signals

Xi Pan*, Shouliang Liu, Shuo Yan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Ground-based positioning systems are necessary as the conventional satellite-based systems suffer from weak received signals. In this paper, we proposed a precise ranging method in single-carrier frequency domain equalization (SC-FDE) system using the amplitude nonlinearity of oversampled signals. A new pattern of the preamble and the unique word was designed for SC-FDE system, where the preamble can be exploited in correlation-based timing algorithm to obtain impulse-like timing metric. Combining with the coarse timing procedure, we proposed a fine ranging method relying on the oversampled signals in SC-FDE receiver employing Q th-power nonlinearity, and then analyzed its estimation mean and variance. The extensive simulations were conducted to validate the proposed method with distinct modulation schemes, rolling-off factors, block lengths, and nonlinearity factors. The results show that the proposed ranging method can achieve unbiased estimate and its root mean square errors will reach the order of centimeter at medium-to-high signal-to-noise ratio region in flat-fading channels, whereas the observed performance degradation in frequency selective channel can be mitigated by using equalized oversampled signals.

Original languageEnglish
Article number8688415
Pages (from-to)49632-49640
Number of pages9
JournalIEEE Access
Volume7
DOIs
Publication statusPublished - 2019

Keywords

  • Ranging
  • SC-FDE
  • oversampled signals
  • timing synchronization

Fingerprint

Dive into the research topics of 'Nonlinearity-Based Ranging Technique in SC-FDE Communication System With Oversampled Signals'. Together they form a unique fingerprint.

Cite this