Noise Resistant Focal Loss for Object Detection

Zibo Hu, Kun Gao*, Xiaodian Zhang, Zeyang Dou

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Noise robustness and hard example mining are two important aspects in object detection. A common view is that the two techniques are contradictory and they cannot be combined. In this paper, we show that there is a possibility to combine the best of two techniques. We find that, even using the hard example mining technique, recent deep neural network-based object detectors themselves have abilities to distinguish correct annotations and wrong annotations during the early stage of training. Based on this observation, we design a simple strategy to separate the wrong annotations from training data, reducing their loss weights and correcting their labels during training. The proposed method is simple, it doesn’t add any computational overhead during model inference. Moreover, the proposed method combines the hard example mining and noise resistance property in one model. Experiments on PASCAL VOC and DOTA datasets show that the proposed method not only archieves competitive performances on clean dataset, but also outperforms the baseline by a large margin when data contain severe noise.

Original languageEnglish
Title of host publicationPattern Recognition and Computer Vision - 3rd Chinese Conference, PRCV 2020, Proceedings
EditorsYuxin Peng, Hongbin Zha, Qingshan Liu, Huchuan Lu, Zhenan Sun, Chenglin Liu, Xilin Chen, Jian Yang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages114-125
Number of pages12
ISBN (Print)9783030606381
DOIs
Publication statusPublished - 2020
Event3rd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020 - Nanjing, China
Duration: 16 Oct 202018 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12306 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020
Country/TerritoryChina
CityNanjing
Period16/10/2018/10/20

Keywords

  • Focal loss
  • Hard example mining
  • Noise resistant focal loss
  • Noise robustness

Fingerprint

Dive into the research topics of 'Noise Resistant Focal Loss for Object Detection'. Together they form a unique fingerprint.

Cite this