TY - JOUR
T1 - No-Insulation High-Temperature Superconductor Winding Technique for Electrical Aircraft Propulsion
AU - Wang, Yawei
AU - Weng, Fangjing
AU - Li, Jianwei
AU - Souc, Jan
AU - Gomory, Fedor
AU - Zou, Shengnan
AU - Zhang, Min
AU - Yuan, Weijia
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - High-temperature superconductor (HTS) machine is a promising candidate for the electrical aircraft propulsion due to its great advantage in high power density. However, the HTS machine always suffers the problem of low thermal stability during quench. In this article, we apply a no-insulation (NI) coil technique on the rotor windings of HTS machines to enhance the stability and safety of the electrical aircraft. The NI HTS rotor windings experience ripple magnetic fields, which leads to induced eddy currents through turn-to-turn contacts. This induced current and accompanying losses will considerably affect the practicality of this technique. To study this issue, an equivalent circuit network model is developed, and it is validated by experiments. Then, analysis using this model shows that most of induced current flows in the outermost turns of the NI HTS coil because of skin effect, and lower turn-to-turn resistivity leads to higher transport current induced and more significant accumulation of turn-to-turn loss. A grading turn-to-turn resistivity is proposed to reduce the transport current induced and ac loss accumulation and meanwhile keep the high thermal stability of the NI HTS coil. Optimization of turn-to-turn resistivity is required when the NI HTS coil is applied in the machines' environments.
AB - High-temperature superconductor (HTS) machine is a promising candidate for the electrical aircraft propulsion due to its great advantage in high power density. However, the HTS machine always suffers the problem of low thermal stability during quench. In this article, we apply a no-insulation (NI) coil technique on the rotor windings of HTS machines to enhance the stability and safety of the electrical aircraft. The NI HTS rotor windings experience ripple magnetic fields, which leads to induced eddy currents through turn-to-turn contacts. This induced current and accompanying losses will considerably affect the practicality of this technique. To study this issue, an equivalent circuit network model is developed, and it is validated by experiments. Then, analysis using this model shows that most of induced current flows in the outermost turns of the NI HTS coil because of skin effect, and lower turn-to-turn resistivity leads to higher transport current induced and more significant accumulation of turn-to-turn loss. A grading turn-to-turn resistivity is proposed to reduce the transport current induced and ac loss accumulation and meanwhile keep the high thermal stability of the NI HTS coil. Optimization of turn-to-turn resistivity is required when the NI HTS coil is applied in the machines' environments.
KW - AC loss
KW - electrical aircraft
KW - no-insulation (NI) coil
KW - ripple magnetic fields
KW - superconducting machine
UR - http://www.scopus.com/inward/record.url?scp=85096161535&partnerID=8YFLogxK
U2 - 10.1109/TTE.2020.3000598
DO - 10.1109/TTE.2020.3000598
M3 - Article
AN - SCOPUS:85096161535
SN - 2332-7782
VL - 6
SP - 1613
EP - 1624
JO - IEEE Transactions on Transportation Electrification
JF - IEEE Transactions on Transportation Electrification
IS - 4
M1 - 9110620
ER -