TY - JOUR
T1 - NLTE Analysis of Y i and Y ii in the Atmospheres of FGK Stars
AU - Alexeeva, Sofya
AU - Wang, Yu
AU - Zhao, Gang
AU - Wang, Feng
AU - Wu, Yong
AU - Wang, Jianguo
AU - Yan, Hongliang
AU - Shi, Jianrong
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru.
AB - The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru.
UR - http://www.scopus.com/inward/record.url?scp=85182382115&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acf5e1
DO - 10.3847/1538-4357/acf5e1
M3 - Article
AN - SCOPUS:85182382115
SN - 0004-637X
VL - 957
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 10
ER -