New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

Run Wu Zhang, Wei Xiao Ji, Chang Wen Zhang*, Sheng Shi Li, Ping Li, Pei Ji Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

Searching for two-dimensional (2D) group IV films with high structural stability and large-gaps is crucial for the realization of a dissipationless transport edge state using the quantum spin Hall effect (QSHE). Based on first-principles calculations, we predict that 2D germanene decorated with ethynyl-derivatives (GeC2X; X = H, F, Cl, Br, I) can be a topological insulator (TI) with a large band-gap for room-temperature applications. Both GeC2I and GeC2Br films are intrinsic TIs with a gap reaching up to 180 meV over a wide range, while GeC2H, GeC2F, and GeC2Cl transform from trivial to nontrivial phases under tensile strain. This topological characteristic can be confirmed by s-pxy band inversion, topological invariant Z2, and time-reversal symmetry protected helical edge states. Notably, the characteristic properties of edge states, such as the Fermi velocity and edge shape, can be tuned by edge modifications. Furthermore, we demonstrate that the h-BN sheet is an ideal substrate for the experimental realization of GeC2X, maintaining their nontrivial topology. Considering their higher thermo-stability, these GeC2X films may be good QSHE platforms for topological electronic device design and fabrication in spintronics.

Original languageEnglish
Pages (from-to)2088-2094
Number of pages7
JournalJournal of Materials Chemistry C
Volume4
Issue number10
DOIs
Publication statusPublished - 14 Mar 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'New family of room temperature quantum spin Hall insulators in two-dimensional germanene films'. Together they form a unique fingerprint.

Cite this