Abstract
In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg - Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.
Original language | English |
---|---|
Article number | 094705 |
Journal | Chinese Physics Letters |
Volume | 29 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2012 |
Externally published | Yes |