TY - GEN
T1 - Nanoscale Devices Based on Two-dimensional and Ferroelectric Materials
AU - Zhao, Zijing
AU - Xu, Kai
AU - Liu, Jialun
AU - Jiang, Wei
AU - Ryu, Hojoon
AU - Rakheja, Shaloo
AU - Low, Tony
AU - Zhu, Wenjuan
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Ferroelectrics have a spontaneous electric polarization that can be reversed by the application of an external electric field, while two-dimensional (2D) materials are crystalline solids consisting of one or few layer(s) of atoms. In ferroelectric/2D heterostructures, the ferroelectric materials can provide programmable and non-volatile doping in the 2D materials, while the atomically thin body in 2D materials enables strong electrostatic control over the channel by the polarized ferroelectric metal oxides. A wide range of nanoscale devices have been developed based on ferroelectric/2D hetero structures including high-performance nonvolatile memories, steep slope transistors, programmable junctions, charge and pressure sensors, and photodiodes [1]-[4]. In recent years, van der Waals (vdW) ferroelectrics emerged, which are 2D materials with intrinsic ferroelectric order. These vdW materials can retain ferroelectricity down to 1 unit-cell thickness, have tunable bandgap, and can be grown or transferred on any substrate [5]-[7], thus enabling a new series of optoelectronic and electromechanical devices. In this talk, we will discuss our recent work in developing reconfigurable, multifunction and analog devices based on ferroelectric/2D heterostructures and vdW ferroelectric materials [8]-[14].
AB - Ferroelectrics have a spontaneous electric polarization that can be reversed by the application of an external electric field, while two-dimensional (2D) materials are crystalline solids consisting of one or few layer(s) of atoms. In ferroelectric/2D heterostructures, the ferroelectric materials can provide programmable and non-volatile doping in the 2D materials, while the atomically thin body in 2D materials enables strong electrostatic control over the channel by the polarized ferroelectric metal oxides. A wide range of nanoscale devices have been developed based on ferroelectric/2D hetero structures including high-performance nonvolatile memories, steep slope transistors, programmable junctions, charge and pressure sensors, and photodiodes [1]-[4]. In recent years, van der Waals (vdW) ferroelectrics emerged, which are 2D materials with intrinsic ferroelectric order. These vdW materials can retain ferroelectricity down to 1 unit-cell thickness, have tunable bandgap, and can be grown or transferred on any substrate [5]-[7], thus enabling a new series of optoelectronic and electromechanical devices. In this talk, we will discuss our recent work in developing reconfigurable, multifunction and analog devices based on ferroelectric/2D heterostructures and vdW ferroelectric materials [8]-[14].
UR - http://www.scopus.com/inward/record.url?scp=85137717623&partnerID=8YFLogxK
U2 - 10.1109/DRC55272.2022.9855649
DO - 10.1109/DRC55272.2022.9855649
M3 - Conference contribution
AN - SCOPUS:85137717623
T3 - Device Research Conference - Conference Digest, DRC
BT - 2022 Device Research Conference, DRC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 Device Research Conference, DRC 2022
Y2 - 26 June 2022 through 29 June 2022
ER -