Multiscale Porous Poly (Ether-Ether-Ketone) Structures Manufactured by Powder Bed Fusion Process

Yaan Liu*, Richard Davies, Nan Yi, Paul McCutchion, Binling Chen, Oana Ghita

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The aim of the study is to create a multiscale highly porous poly (ether-ether-ketone) (PEEK) structure while maintaining mechanical performance; the distribution of pores being generated by the manufacturing process combined with a porogen leaching operation. Salt at 70 wt% concentration was used as a porogen in a dry blend with PEEK powder sintered in the powder bed fusion process. The printed porous PEEK structures were examined and evaluated by scanning electron microscopy, microcomputed tomography, and mechanical testing. The PEEK structures incorporating 70 wt% salt achieved 79-86% porosity, a compressive yield strength of 4.1 MPa, and a yield strain of ∼60%. Due to the salt leaching process, the PEEK porous frameworks were fabricated without the need to drastically reduce the process parameters (defined by the energy density [ED]), hence maintaining the structural integrity and good mechanical performance. The compression results highlighted that the performance is influenced by the printing orientation, level of the PEEK particle coalescence (controlled here by the ED), pore/cell wall thickness, and subsequently, the overall porosity framework. The porous printed PEEK structures could find potential uses in a wide range of applications from tissue engineering, filtration and separation to catalysts, drug release, and gas storage.

Original languageEnglish
Pages (from-to)219-230
Number of pages12
Journal3D Printing and Additive Manufacturing
Volume11
Issue number1
DOIs
Publication statusPublished - 1 Feb 2024
Externally publishedYes

Keywords

  • 3D printing
  • additive manufacturing
  • porous PEEK structures
  • powder bed fusion

Fingerprint

Dive into the research topics of 'Multiscale Porous Poly (Ether-Ether-Ketone) Structures Manufactured by Powder Bed Fusion Process'. Together they form a unique fingerprint.

Cite this

Liu, Y., Davies, R., Yi, N., McCutchion, P., Chen, B., & Ghita, O. (2024). Multiscale Porous Poly (Ether-Ether-Ketone) Structures Manufactured by Powder Bed Fusion Process. 3D Printing and Additive Manufacturing, 11(1), 219-230. https://doi.org/10.1089/3dp.2021.0317