Abstract
Optical holographic encryption (OHE) has been extensively researched in the field of information security due to its parallel and multi-dimensional characteristics. However, although some progress in OHE has been made in recent years, inherent security flaws resulting from the robust nature of holograms persist. In this study, we propose a multilevel holographic encryption method based on the Tiger Amulet (TA) concept. Compared with the normal OHE, our method employs two ciphertexts. It strategically utilizes the low-level plaintext as intentional deceptive content to confound the potential eavesdroppers. Furthermore, we ingeniously exploit the hologram’s robustness in reverse, thereby establishing an additional protection mechanism to enhance the security of the middle-level plaintext. Leveraging the TA concept, the high-level plaintext can only be decrypted when two matched ciphertexts are combined and collimated. The TA based decryption mechanism enhances the security and sensitivity deciphering high-level plaintext. Benefiting from the security mechanisms above, our proposed method demonstrates promising applicability across diverse scenarios and holds the potential to redefine the landscape of multilevel OHE design.
Original language | English |
---|---|
Pages (from-to) | 39396-39414 |
Number of pages | 19 |
Journal | Optics Express |
Volume | 31 |
Issue number | 24 |
DOIs | |
Publication status | Published - 29 Oct 2023 |