Multi-Vehicle Collaborative Lane Changing Based on Multi-Agent Reinforcement Learning

Xiang Zhang, Shihao Li, Boyang Wang*, Mingxuan Xue, Zhiwei Li, Haiou Liu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Achieving safe lane changing is a crucial function of autonomous vehicles, with the complexity and uncertainty of interaction involved. Learning-based approaches and vehicle collaboration techniques can enhance vehicles' awareness of the dynamic environment, thereby enhancing the interactive capabilities. Therefore, this paper proposes a Multi-Agent Reinforcement Learning (MARL) approach to coordinate connected vehicles in reaching their respective lane changing targets. Vehicle state, scene elements, potential risk, and intention information are abstracted into highly expressive vectorized inputs. Based on this, a lightweight parameter-sharing network framework is designed to learn safe and robust cooperative lane changing policies. To address the challenges arising from multi-objects and multi-targets, a Prioritized Action Extrapolation (PAE) mechanism is employed to train the network. Through priority assignment and action extrapolation, the proposed MARL approach can optimize the decision sequence dynamically and enhance the interaction in multi-vehicle scenarios, thereby improving the vehicles' intention attainment rate. Simulated experiments in 2-lane and 3-lane scenarios have been conducted to verify the adaptability and performance of the proposed MARL method.

Original languageEnglish
Title of host publication35th IEEE Intelligent Vehicles Symposium, IV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1214-1221
Number of pages8
ISBN (Electronic)9798350348811
DOIs
Publication statusPublished - 2024
Event35th IEEE Intelligent Vehicles Symposium, IV 2024 - Jeju Island, Korea, Republic of
Duration: 2 Jun 20245 Jun 2024

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (Electronic)2642-7214

Conference

Conference35th IEEE Intelligent Vehicles Symposium, IV 2024
Country/TerritoryKorea, Republic of
CityJeju Island
Period2/06/245/06/24

Fingerprint

Dive into the research topics of 'Multi-Vehicle Collaborative Lane Changing Based on Multi-Agent Reinforcement Learning'. Together they form a unique fingerprint.

Cite this