TY - JOUR
T1 - Multi-Temporal SamplePair Generation for Building Change Detection Promotion in Optical Remote Sensing Domain Based on Generative Adversarial Network
AU - Li, Yute
AU - Chen, He
AU - Dong, Shan
AU - Zhuang, Yin
AU - Li, Lianlin
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - Change detection is a critical task in remote sensing Earth observation for identifying changes in the Earth’s surface in multi-temporal image pairs. However, due to the time-consuming nature of image collection, labor-intensive pixel-level labeling with the rare occurrence of building changes, and the limitation of the observation location, it is difficult to build a large, class-balanced, and diverse building change detection dataset, which can result in insufficient changed sample pairs for training change detection models, thus degrading their performance. Thus, in this article, given that data scarcity and the class-imbalance issue lead to the insufficient training of building change detection models, a novel multi-temporal sample pair generation method, namely, Image-level Sample Pair Generation (ISPG), is proposed to improve the change detection performance through dataset expansion, which can generate more valid multi-temporal sample pairs to overcome the limitation of the small amount of change information and class-imbalance issue in existing datasets. To achieve this, a Label Translation GAN (LT-GAN) was designed to generate complete remote sensing images with diverse building changes and background pseudo-changes without any of the complex blending steps used in previous works. To obtain more detailed features in image pair generation for building change detection, especially the surrounding context of the buildings, we designed multi-scale adversarial loss (MAL) and feature matching loss (FML) to supervise and improve the quality of the generated bitemporal remote sensing image pairs. On the other hand, we also consider that the distribution of generated buildings should follow the pattern of human-built structures. The proposed approach was evaluated on two building change detection datasets (LEVIR-CD and WHU-CD), and the results proved that the proposed method can achieve state-of-the-art (SOTA) performance, even if using plain models for change detection. In addition, the proposed approach to change detection image pair generation is a plug-and-play solution that can be used to improve the performance of any change detection model.
AB - Change detection is a critical task in remote sensing Earth observation for identifying changes in the Earth’s surface in multi-temporal image pairs. However, due to the time-consuming nature of image collection, labor-intensive pixel-level labeling with the rare occurrence of building changes, and the limitation of the observation location, it is difficult to build a large, class-balanced, and diverse building change detection dataset, which can result in insufficient changed sample pairs for training change detection models, thus degrading their performance. Thus, in this article, given that data scarcity and the class-imbalance issue lead to the insufficient training of building change detection models, a novel multi-temporal sample pair generation method, namely, Image-level Sample Pair Generation (ISPG), is proposed to improve the change detection performance through dataset expansion, which can generate more valid multi-temporal sample pairs to overcome the limitation of the small amount of change information and class-imbalance issue in existing datasets. To achieve this, a Label Translation GAN (LT-GAN) was designed to generate complete remote sensing images with diverse building changes and background pseudo-changes without any of the complex blending steps used in previous works. To obtain more detailed features in image pair generation for building change detection, especially the surrounding context of the buildings, we designed multi-scale adversarial loss (MAL) and feature matching loss (FML) to supervise and improve the quality of the generated bitemporal remote sensing image pairs. On the other hand, we also consider that the distribution of generated buildings should follow the pattern of human-built structures. The proposed approach was evaluated on two building change detection datasets (LEVIR-CD and WHU-CD), and the results proved that the proposed method can achieve state-of-the-art (SOTA) performance, even if using plain models for change detection. In addition, the proposed approach to change detection image pair generation is a plug-and-play solution that can be used to improve the performance of any change detection model.
KW - change detection
KW - data generation
KW - generative adversarial networks
KW - remote sensing
UR - http://www.scopus.com/inward/record.url?scp=85159276469&partnerID=8YFLogxK
U2 - 10.3390/rs15092470
DO - 10.3390/rs15092470
M3 - Article
AN - SCOPUS:85159276469
SN - 2072-4292
VL - 15
JO - Remote Sensing
JF - Remote Sensing
IS - 9
M1 - 2470
ER -