Abstract
Ghost imaging functions achieved by means of the spatial correlations between two photons is a new modality in imaging systems. With a small number of photons, ghost imaging is usually realized based on the position correlation of photon pairs produced from the spontaneous parametric down-conversion process. Here we demonstrate a way to realize multi-path ghost imaging by introducing an additional time correlation. Different delays of paths will induce the shift of the coincidence peak, which carries the information about objects. By choosing the suitable coincidence window, we obtain images of three objects simultaneously, with a visibility of 87.2%. This method provides insights and techniques into multi-parameter ghost imaging. It can be applied to other correlated imaging systems, for example, quantum spiral imaging.
Original language | English |
---|---|
Article number | 044205 |
Journal | Chinese Physics Letters |
Volume | 36 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |