Multi-objective optimal design of hybrid composite laminates for minimum cost and maximum fundamental frequency and frequency gaps

Haichao An*, Shenyan Chen, Hai Huang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

The design of hybrid composite laminates made of high-stiffness skin and low-stiffness core layers is presented. By considering vibration characteristics, the objective is the simultaneous maximization of fundamental frequency (or the gap between two consecutive frequencies) and minimization of cost by seeking the optimal stacking sequences of both skin and core layers. By introducing the concept of ground structure in laminate design, an initial stacking sequence consisting of high-stiffness skin and low-stiffness core layers is firstly given, and the design problem is then formulated with mixed discrete and continuous variables by defining a weighted min-max objective function and determining the minimum, where discrete variables represent the existence of each ply in the initial stacking sequence, and continuous variables are used for ply thicknesses. The problem is made explicit with branched multipoint approximate functions, and genetic algorithm (GA) is adopted to optimize discrete variables so that necessary/unnecessary layers from the initial stacking sequence are retained/suppressed. For fitness calculation in GA, a second-level approximation is built with the convex linearization to optimize continuous ply thicknesses of the retained layers. Using that approach, optimal stacking sequences are found for hybrid graphite/epoxy-glass/epoxy laminated plates with different aspect ratios, by considering free vibration.

Original languageEnglish
Pages (from-to)268-276
Number of pages9
JournalComposite Structures
Volume209
DOIs
Publication statusPublished - 1 Feb 2019
Externally publishedYes

Keywords

  • Eigenfrequency design
  • Hybrid laminates
  • Optimal design
  • Stacking sequence optimization

Fingerprint

Dive into the research topics of 'Multi-objective optimal design of hybrid composite laminates for minimum cost and maximum fundamental frequency and frequency gaps'. Together they form a unique fingerprint.

Cite this