Abstract
An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of nickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtosecond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of K on the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train.
Original language | English |
---|---|
Article number | 062201 |
Journal | Chinese Optics Letters |
Volume | 13 |
Issue number | 6 |
DOIs | |
Publication status | Published - 10 Jun 2015 |