Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries

Fu Sun, Dong Zhou, Xin He, Markus Osenberg, Kang Dong*, Libao Chen, Shilin Mei, André Hilger, Henning Markötter, Yan Lu, Shanmu Dong, Shashidhara Marathe, Christoph Rau, Xu Hou, Jie Li, Marian Cristian Stan, Martin Winter, Robert Dominko, Ingo Manke

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

Although a great variety of strategies to suppress Li dendrite have been proposed for lithium metal batteries (LMBs), a deeper understanding of the factors playing a crucial role during extended electrochemical cycling is often lacking. Herein, the morphological reversibility of the Li-based anode for next-generation batteries under three prevalent strategies, i.e., the use of Li-Al alloys, polymer coating, and anodic aluminum oxide (AAO) membrane attachment, has been sophisticatedly investigated by nondestructive visualization. The characterizations clearly capture the unprecedented morphological evolution of the Li-based anode during the electrochemical cycling. Furthermore, the results unambiguously indicate the formation of the "dead" electrochemically generated porous structures regardless of >99% cycling efficiency shown in Li symmetric cells in all three cell configurations. The results presented here shed light on further understanding of the morphological evolution of the Li anode under different scenarios, and it also enlightens us on new research activities that may assist in propelling the commercialization of LMBs.

Original languageEnglish
Pages (from-to)152-161
Number of pages10
JournalACS Energy Letters
Volume5
Issue number1
DOIs
Publication statusPublished - 10 Jan 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries'. Together they form a unique fingerprint.

Cite this