Abstract
Inspired by the principle of molecular orbital engineering, two structurally well-defined polyoxometalate (POM)-based hydrogen-evolving catalysts, namely, [H2N(CH3)2]9.24Na3H4[Cu2.06W1.94O2(P2W16O60)2]·40H2O (POM-1) and [H2N(CH3)2]12.6Na2H3[Cu2.4Mo6.48W3.12O26(P2W12O48)2]·27H2O (POM-2), have been successfully synthesized and systematically characterized. Both POM compounds exhibited similar twin-Dawson-type polyoxoanion structures in which the monomer was connected through two μ2-O atoms bonded to the disordered Cu centers, as revealed by single-crystal X-ray diffraction analyses. Electronic structure analyses confirmed that the introduction of mix-addenda Mo atoms could readily adjust the lowest unoccupied molecular orbital (LUMO) energy level of POM-2, leading to a more negative lowest unoccupied molecular orbital (LUMO) position compared with that of POM-1. Various spectroscopic and theoretical studies confirmed that the molecular orbital engineering modulation of POM-2 could provide a higher driving force for thermodynamically favorable and efficient electron transfer from the photosensitizer to POM-2. In a three-component photocatalytic system, POM-2 exhibited the most efficient photocatalytic hydrogen evolution activity compared to all reported similar catalytic systems, achieving a catalytic turnover number (TON) of 5362 after 6 h of photocatalysis under visible-light irradiation.
Original language | English |
---|---|
Pages (from-to) | 5006-5015 |
Number of pages | 10 |
Journal | ACS Catalysis |
Volume | 14 |
Issue number | 7 |
DOIs | |
Publication status | Published - 5 Apr 2024 |
Keywords
- hydrogen evolution
- mixed-addenda
- molecular orbital engineering
- photocatalysis
- polyoxometalate