TY - GEN
T1 - Molecular dynamics investigation of phase change induced by ultrafast laser irradiation
AU - Ji, Pengfei
AU - Rong, Yiming
AU - Zhang, Yuwen
AU - Tang, Yong
N1 - Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - Irradiated by ultrafast laser pulse, the phase change phenomena in aluminum film are investigated via molecular dynamics simulation. The embedded-atom method potential is employed to describe atomic interactions. The laser heating is modeled by adding a kinetic energy term to the laser pulse irradiated atom at each time step. The resolidification is realized by thermal conduction to cool down locally melted atoms. The temporal and spatial distribution of atomic motion is recorded to compute the temperature evolution and structure change during melting and resolidification processes. The interface between solid and liquid is identified via Ackland analysis. Due to the temperature difference, diffraction profile of the resolidified aluminum is found different from the aluminum before laser irradiation. The simulation results provide helpful information on the atomic scale temperature variation and structure transformation underlying ultrafast laser induced phase change.
AB - Irradiated by ultrafast laser pulse, the phase change phenomena in aluminum film are investigated via molecular dynamics simulation. The embedded-atom method potential is employed to describe atomic interactions. The laser heating is modeled by adding a kinetic energy term to the laser pulse irradiated atom at each time step. The resolidification is realized by thermal conduction to cool down locally melted atoms. The temporal and spatial distribution of atomic motion is recorded to compute the temperature evolution and structure change during melting and resolidification processes. The interface between solid and liquid is identified via Ackland analysis. Due to the temperature difference, diffraction profile of the resolidified aluminum is found different from the aluminum before laser irradiation. The simulation results provide helpful information on the atomic scale temperature variation and structure transformation underlying ultrafast laser induced phase change.
UR - http://www.scopus.com/inward/record.url?scp=85041007079&partnerID=8YFLogxK
U2 - 10.1115/IMECE2017-70143
DO - 10.1115/IMECE2017-70143
M3 - Conference contribution
AN - SCOPUS:85041007079
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Heat Transfer and Thermal Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -