Molecular dynamics investigation of phase change induced by ultrafast laser irradiation

Pengfei Ji, Yiming Rong, Yuwen Zhang, Yong Tang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Irradiated by ultrafast laser pulse, the phase change phenomena in aluminum film are investigated via molecular dynamics simulation. The embedded-atom method potential is employed to describe atomic interactions. The laser heating is modeled by adding a kinetic energy term to the laser pulse irradiated atom at each time step. The resolidification is realized by thermal conduction to cool down locally melted atoms. The temporal and spatial distribution of atomic motion is recorded to compute the temperature evolution and structure change during melting and resolidification processes. The interface between solid and liquid is identified via Ackland analysis. Due to the temperature difference, diffraction profile of the resolidified aluminum is found different from the aluminum before laser irradiation. The simulation results provide helpful information on the atomic scale temperature variation and structure transformation underlying ultrafast laser induced phase change.

Original languageEnglish
Title of host publicationHeat Transfer and Thermal Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858431
DOIs
Publication statusPublished - 2017
Externally publishedYes
EventASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017 - Tampa, United States
Duration: 3 Nov 20179 Nov 2017

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8

Conference

ConferenceASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Country/TerritoryUnited States
CityTampa
Period3/11/179/11/17

Fingerprint

Dive into the research topics of 'Molecular dynamics investigation of phase change induced by ultrafast laser irradiation'. Together they form a unique fingerprint.

Cite this