Abstract
A three-dimensional (3D) laser imaging system based on time of flight is proposed, based on the human retina structure. The system obtains 3D images with space-variant resolution, and we further establish mathematical models of the system and carried out simulative comparison between space-variant structure (SVS) and space-invariant structure (SIS). The system based on SVS produces significant improvements over traditional system based on SIS in the following aspects: (1) The system based on SVS uses less pixels than that based on SIS under the same field of view (FOV) and resolution. Therefore, this property is more suitable for uses in situations that require high speed and large volume data processing. (2) The system based on SVS has higher efficiency of utilization of photodiode array than that based on SIS. (3) 3D image based on SVS has the properties of rotation and scaling invariance. (4) The system based on SVS has higher echo power in outside ring of large photodiode array, which is more effective in detecting targets with low reflectance.
Original language | English |
---|---|
Pages (from-to) | 62-70 |
Number of pages | 9 |
Journal | Optics and Laser Technology |
Volume | 78 |
DOIs | |
Publication status | Published - 1 Apr 2016 |
Keywords
- Laser range finder
- Log-polar
- Space-variant
- Three-dimensional image