Abstract
A theoretical model for GaAs-based solar cells with PIN structure is proposed herein. The effect of varying key parameters on the conversion efficiency is investigated. The simulations are performed using COMSOL Multiphysics software. The mobilities of electrons and holes are varied in combination with the lifetime (LT). As a result, a maximum efficiency of 10.81% is achieved by setting the electron and hole mobility to 1.5k cm2 V−1 s−1 and 0.3k cm2 V−1 s−1, respectively. The electron and hole carrier LT are 3 ns and 7 ns, respectively, for the maximum output. The effect of the surface recombination velocity (SRV) is also studied, and a maximum efficiency of 13.75% is achieved for an SRV of 1k ms−1 for electrons and holes. The results show that higher photovoltaic efficiencies can be achieved by increasing the mobility and carrier LT while decreasing the surface recombination velocities.
Original language | English |
---|---|
Pages (from-to) | 310-316 |
Number of pages | 7 |
Journal | Journal of Computational Electronics |
Volume | 20 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2021 |
Keywords
- Lifetime
- Mobility
- Recombination
- Solar cell