Modeling and combined control of aerial vehicle based on aerodynamic force and lateral thrust

Zheng Jie Wang*, Yang Bo Long, Jing Lu, Wei Song

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The aim of the traditional aerodynamic control is to change the aerial vehicle attack angle by angular motion induced by a moment, which is generated by deflecting its control surfaces, so as to make it be able to generate pneumatic lift and obtain the expected lateral acceleration. However, this maneuvering process will result in a delay between sending and conducting of command signals. Compared with the aerodynamic control mode, in the direct lateral thrust control mode, the lateral control jet engine is used to generate control force and torque. Therefore, in this paper a combined control mode of lateral thrust and aerodynamic force is proposed to solve the problem of rapid response and high available overload. First, the control scheme is established using the aerodynamic control as the main input and the reaction-jet control system (RCS) as the auxiliary input. Then the dynamic and kinematics mathematic model of the aerial vehicle is built based on the direct lateral thrust control. As the final step, aiming at the task of terminal stage of the aerial vehicle to attack the target from the top, the combined control system is designed according to fuzzy adaptive algorithm. Simulation results indicate that the overload required under the combined control is lower than that under the aerodynamic control. So this combined control system can satisfy the requirements of the aerial vehicle overload better than the traditional mode does.

Original languageEnglish
Title of host publication2010 International Conference on Modelling, Identification and Control, ICMIC 2010
Pages106-111
Number of pages6
Publication statusPublished - 2010
Event2010 International Conference on Modelling, Identification and Control, ICMIC 2010 - Okayama, Japan
Duration: 17 Jul 201019 Jul 2010

Publication series

Name2010 International Conference on Modelling, Identification and Control, ICMIC 2010

Conference

Conference2010 International Conference on Modelling, Identification and Control, ICMIC 2010
Country/TerritoryJapan
CityOkayama
Period17/07/1019/07/10

Keywords

  • Combined control
  • Dive overhead attack technology
  • Fuzzy control
  • Reaction-jet control

Fingerprint

Dive into the research topics of 'Modeling and combined control of aerial vehicle based on aerodynamic force and lateral thrust'. Together they form a unique fingerprint.

Cite this