Abstract
This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an outer tree code to an inner compressed sensing code for slot-wise message stitching. We suggest that by exploiting the MIMO channel information in the angular domain, redundancies required by the tree encoder/decoder in CCS can be removed to improve spectral efficiency, thereby an uncoupled transmission protocol is devised. To perform activity detection and channel estimation, we propose an expectation-maximization-aided generalized approximate message passing algorithm with a Markov random field support structure, which captures the inherent clustered sparsity structure of the angular domain channel. Then, message reconstruction in the form of a clustering decoder is performed by recognizing slot-distributed channels of each active user based on similarity. We put forward the slot-balanced K -means algorithm as the kernel of the clustering decoder, resolving constraints and collisions specific to the application scene. Extensive simulations reveal that the proposed scheme achieves a better error performance at high spectral efficiency compared to the CCS-based URA schemes.
Original language | English |
---|---|
Pages (from-to) | 2480-2498 |
Number of pages | 19 |
Journal | IEEE Transactions on Communications |
Volume | 70 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2022 |
Keywords
- Activity detection
- channel estimation
- compressed sensing
- massive machine-type communications
- random access