Magnetically actuated functional gradient nanocomposites for strong and durable bioinspired interfaces/surfaces

Zhengzhi Wang*, Xiaoming Shi, Houbing Huang, Chenmin Yao, Wen Xie, Cui Huang, Ping Gu, Xingqiao Ma, Zuoqi Zhang, Long qing Chen

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

Biological systems have evolved various functional gradients within interfacial and surface regions to fulfil unusual mechanically-challenging demands [1-3]. Exploring these design principles of nature materials into practice remains difficult, however, due to the lack of proper processing technique for analogous gradients within narrow regions. Here we report a facile and cost-effective technique enabling the construction of a variety of bioinspired gradient interfaces/surfaces that are not accessible using state-of-the-art technologies. This technique utilizes magnetic actuation to control spatial distribution of nano-sized reinforcements inside polymer matrices, being able to generate functional gradient nanocomposites (FGNCs) with controllable stiff-to-soft or soft-to-stiff transition within regions as narrow as 10 microns (Fig. 1). We demonstrate the robustness and universality of this technique by implementing the FGNCs into three mechanically-challenging applications: 1) functional gradient interlayer for strong, intact, and ultra-durable jointing between dissimilar materials; 2) functional gradient coating for hard, wear-resistant, and long-lasting surface protections; and 3) functional gradient pillars for flexible, structurally stable, and reusable biomimetic adhesives. The presented study opens a new route for designing and developing materials/structures with optimized performances by simply modifying the spatial distributions of material composition. This route can potentially be integrated into advanced manufacturing techniques [4, 5] and applied to numerous surface/interface fields to achieve unparalleled combinations among various critical properties.

Original languageEnglish
Publication statusPublished - 2017
Externally publishedYes
Event21st International Conference on Composite Materials, ICCM 2017 - Xi'an, China
Duration: 20 Aug 201725 Aug 2017

Conference

Conference21st International Conference on Composite Materials, ICCM 2017
Country/TerritoryChina
CityXi'an
Period20/08/1725/08/17

Keywords

  • Bioinspirations
  • Biomimetics
  • Functional gradient
  • Magnetophoresis
  • Nanocomposites

Fingerprint

Dive into the research topics of 'Magnetically actuated functional gradient nanocomposites for strong and durable bioinspired interfaces/surfaces'. Together they form a unique fingerprint.

Cite this