Magnetic micromachine using nickel nanoparticles for propelling and releasing in indirect assembly of cell-laden micromodules

Jianing Li, Huaping Wang*, Juan Cui, Qing Shi, Zhiqiang Zheng, Tao Sun, Qiang Huang, Toshio Fukuda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Magnetic micromachines as wireless end-effectors have been widely applied for drug discovery and regenerative medicine. Yet, the magnetic assembly of arbitrarily shaped cellular microstructures with high efficiency and flexibility still remains a big challenge. Here, a novel clamp-shape micromachine using magnetic nanoparticles was developed for the indirect untethered bioassembly. With a multi-layer template, the nickel nanoparticles were mixed with polydimethylsiloxane (PDMS) for mold replication of the micromachine with a high-resolution and permeability. To actuate the micromachine with a high flexibility and large scalable operation range, a multi-pole electromagnetic system was set up to generate a three-dimensional magnetic field in a large workspace. Through designing a series of flexible translations and rotations with a velocity of 15mm/s and 3 Hz, the micromachine realized the propel-and-throw strategy to overcome the inevitable adhesion during bioassembly. The hydrogel microstructures loaded with different types of cells or the bioactive materials were effectively assembled into microtissues with reconfigurable shape and composition. The results indicate that indirect magnetic manipulation can perform an efficient and versatile bioassembly of cellular micromodules, which is promising for drug trials and modular tissue engineering.

Original languageEnglish
Article number370
JournalMicromachines
Volume10
Issue number6
DOIs
Publication statusPublished - 1 Jun 2019

Keywords

  • Bioassembly
  • Magnetic manipulation
  • Magnetic nanoparticles
  • Tissue engineering

Fingerprint

Dive into the research topics of 'Magnetic micromachine using nickel nanoparticles for propelling and releasing in indirect assembly of cell-laden micromodules'. Together they form a unique fingerprint.

Cite this