Low temperature fabrication of Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic matrix composite by slurry coating and laminating combined with precursor infiltration and pyrolysis

Lu Zhang, Wenqing Wang, Niping Zhou, Xingjie Dong, Fang Yuan*, Rujie He

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

In this study, the low temperature fabrication of a Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic (HEC) ceramic matrix composite (CMC) was achieved through slurry coating and laminating (SCL) combined with precursor infiltration and pyrolysis (PIP). Firstly, the (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C HEC powder was synthesized by pressureless sintering and ball milling. Then, a Cf/BNi/HECm CMC preform was obtained by the SCL process. At last, the composite was densified by PIP of SiC at 1200 °C and a Cf/BNi/HEC-SiCm CMC was the final result. The density and open porosity of the HEC-CMC were 2.7 g/cm3 and 10%, respectively. The composite had a relatively high flexural strength (269 ± 25 MPa) and flexural modulus (53.3 ± 7.9 GPa). Fiber degradation was scarcely detected and fiber pullout was clearly observed. Most importantly, the fabrication method is simple and the fabrication temperature is rather low. This study opens a new insight for high entropy ceramic matrix composites fabrication.

Original languageEnglish
Pages (from-to)3099-3106
Number of pages8
JournalJournal of the European Ceramic Society
Volume42
Issue number7
DOIs
Publication statusPublished - Jul 2022

Keywords

  • Composite
  • Fabrication
  • High entropy ceramic
  • Mechanical property
  • Microstructure

Fingerprint

Dive into the research topics of 'Low temperature fabrication of Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic matrix composite by slurry coating and laminating combined with precursor infiltration and pyrolysis'. Together they form a unique fingerprint.

Cite this