Local Domain Adaptation for Cross-Domain Activity Recognition

Jiachen Zhao*, Fang Deng, Haibo He, Jie Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Sensor-based human activity recognition (HAR) aims to recognize a human's physical actions by using sensors attached to different body parts. As a user-specific application, HAR often suffers poor generalization from training on an individual to testing on another individual, or from one body part to another body part. To tackle this cross-domain HAR problem, this article proposes a domain adaptation (DA) method called local domain adaptation (LDA), whose core is to align cluster-To-cluster distributions between the source domain and the target domain. On the one hand, LDA differs from existing set-To-set alignment by reducing the distribution discrepancy at a finer granularity. On the other hand, LDA is superior to the class-To-class alignment because it can provide more accurate soft labels for the target domain. Specifically, LDA contains three main steps: 1) groups the activity class into several high-level abstract clusters; 2) maps the original data of each cluster in both domains into the same low-dimension subspace to align the intracluster data distribution; 3) predicts the class labels for target domain in the low-dimension subspace. Experimental results on two public HAR benchmark datasets show that LDA outperforms state-of-The-Art DA methods for the cross-domain HAR.

Original languageEnglish
Article number9288927
Pages (from-to)12-21
Number of pages10
JournalIEEE Transactions on Human-Machine Systems
Volume51
Issue number1
DOIs
Publication statusPublished - Feb 2021
Externally publishedYes

Keywords

  • Domain adaptation
  • human activity recognition
  • transfer learning
  • wearable sensor

Fingerprint

Dive into the research topics of 'Local Domain Adaptation for Cross-Domain Activity Recognition'. Together they form a unique fingerprint.

Cite this