Liver Segmentation in CT Images Using a Non-Local Fully Convolutional Neural Network

Lei Chen, Hong Song, Qiang Li, Yutao Cui, Jian Yang, Xiaohua Tony Hu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Liver segmentation is a critical step in diagnosing various kinds of hepatic diseases. Based on the segmentation results, physicians can make further assessments more accurately. Although deep learning methods have achieved excellent performance in liver segmentation tasks, the traditional convolution encoder-decoder architecture may easily loss the spatial information due to the stacked convolution and pooling layers. In this paper, we present a non-local spatial feature based neural network (referred as NL-Net) to learn more spatial features of liver for more accurate segmentation. The NL-Net consists of an encoder block, a non-local spatial feature learning block and a decoder block. We utilized the pretrained ResNet model with transfer learning as the encoder. The non-local block can learn long range dependencies of the liver pixel position by computing the response at a position as a weighted sum of the responses at all positions, which can help the network learn more robust features. We applied the proposed model to ISBI 2019 CHAOs liver Segmentation Challenge task and evaluated it on the testing set. Experimental results show that the proposed NL-Net achieved an average dice of 0.972, RAVD of 1.593, ASSD of 1.926 and MSSD of 110.658 on the segmentation results.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
EditorsIllhoi Yoo, Jinbo Bi, Xiaohua Tony Hu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages639-642
Number of pages4
ISBN (Electronic)9781728118673
DOIs
Publication statusPublished - Nov 2019
Event2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 - San Diego, United States
Duration: 18 Nov 201921 Nov 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019

Conference

Conference2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
Country/TerritoryUnited States
CitySan Diego
Period18/11/1921/11/19

Keywords

  • CT
  • convolutional neural networks
  • deep learning
  • liver segmentation
  • non-local

Fingerprint

Dive into the research topics of 'Liver Segmentation in CT Images Using a Non-Local Fully Convolutional Neural Network'. Together they form a unique fingerprint.

Cite this