Link prediction: The power of maximal entropy random walk

Rong Hua Li*, Jeffrey Xu Yu, Jianquan Liu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

74 Citations (Scopus)

Abstract

Link prediction is a fundamental problem in social network analysis. The key technique in unsupervised link prediction is to find an appropriate similarity measure between nodes of a network. A class of wildly used similarity measures are based on random walk on graph. The traditional random walk (TRW) considers the link structures by treating all nodes in a network equivalently, and ignores the centrality of nodes of a network. However, in many real networks, nodes of a network not only prefer to link to the similar node, but also prefer to link to the central nodes of the network. To address this issue, we use maximal entropy random walk (MERW) for link prediction, which incorporates the centrality of nodes of the network. First, we study certain important properties of MERW on graph G by constructing an eigen-weighted graph G. We show that the transition matrix and stationary distribution of MERW on G are identical to the ones of TRW on G. Based on G, we further give the maximal entropy graph Laplacians, and show how to fast compute the hitting time and commute time of MERW. Second, we propose four new graph kernels and two similarity measures based on MERW for link prediction. Finally, to exhibit the power of MERW in link prediction, we compare 27 various link prediction methods over 3 synthetic and 8 real networks. The results show that our newly proposed MERW based methods outperform the state-of-the-art method on most datasets.

Original languageEnglish
Title of host publicationCIKM'11 - Proceedings of the 2011 ACM International Conference on Information and Knowledge Management
Pages1147-1156
Number of pages10
DOIs
Publication statusPublished - 2011
Externally publishedYes
Event20th ACM Conference on Information and Knowledge Management, CIKM'11 - Glasgow, United Kingdom
Duration: 24 Oct 201128 Oct 2011

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference20th ACM Conference on Information and Knowledge Management, CIKM'11
Country/TerritoryUnited Kingdom
CityGlasgow
Period24/10/1128/10/11

Keywords

  • graph kernels
  • link prediction
  • maximal entropy random walk
  • similarity measures

Fingerprint

Dive into the research topics of 'Link prediction: The power of maximal entropy random walk'. Together they form a unique fingerprint.

Cite this