Linear Convergence of Gradient Methods for Estimating Structured Transition Matrices in High-dimensional Vector Autoregressive Models

Xiao Lv, Wei Cui, Yulong Liu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

In this paper, we present non-asymptotic optimization guarantees of gradient descent methods for estimating structured transition matrices in high-dimensional vector autoregressive (VAR) models. We adopt the projected gradient descent (PGD) for single-structured transition matrices and the alternating projected gradient descent (AltPGD) for superposition-structured ones. Our analysis demonstrates that both gradient algorithms converge linearly to the statistical error even though the strong convexity of the objective function is absent under the high-dimensional settings. Moreover our result is sharp (up to a constant factor) in the sense of matching the phase transition theory of the corresponding model with independent samples. To the best of our knowledge, this analysis constitutes first non-asymptotic optimization guarantees of the linear rate for regularized estimation in high-dimensional VAR models. Numerical results are provided to support our theoretical analysis.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages16751-16763
Number of pages13
ISBN (Electronic)9781713845393
Publication statusPublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume20
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

Fingerprint

Dive into the research topics of 'Linear Convergence of Gradient Methods for Estimating Structured Transition Matrices in High-dimensional Vector Autoregressive Models'. Together they form a unique fingerprint.

Cite this