Lightweight Network Ensemble Architecture for Environmental Perception on the Autonomous System

Yingpeng Dai, Junzheng Wang, Jing Li*, Lingfeng Meng, Songfeng Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

It is important for the autonomous system to understand environmental information. For the autonomous system, it is desirable to have a strong generalization ability to deal with different complex environmental information, as well as have high accuracy and quick inference speed. Network ensemble architecture is a good choice to improve network performance.However, it is unsuitable for real-time applications on the autonomous system. To tackle this problem, a new neural network ensemble named partial-shared ensemble network (PSENet) is presented. PSENet changes network ensemble architecture from parallel architecture to scatter architecture and merges multiple component networks together to accelerate the inference speed. To make component networks independent of each other, a training method is designed to train the network ensemble architecture. Experiments on Camvid and CIFAR-10 reveal that PSENet achieves quick inference speed while maintaining the ability of ensemble learning. In the real world, PSENet is deployed on the unmanned system and deals with vision tasks such as semantic segmentation and environmental prediction in different fields.

Original languageEnglish
Pages (from-to)135-156
Number of pages22
JournalCMES - Computer Modeling in Engineering and Sciences
Volume134
Issue number1
DOIs
Publication statusPublished - 2023

Keywords

  • Neural network ensemble
  • classification
  • real-time application
  • semantic segmentation

Fingerprint

Dive into the research topics of 'Lightweight Network Ensemble Architecture for Environmental Perception on the Autonomous System'. Together they form a unique fingerprint.

Cite this