LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising

Zichun Wang, Ying Fu*, Ji Liu, Yulun Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Citations (Scopus)

Abstract

Despite the significant results on synthetic noise under simplified assumptions, most self-supervised denoising methods fail under real noise due to the strong spatial noise correlation, including the advanced self-supervised blindspot networks (BSNs). For recent methods targeting real-world denoising, they either suffer from ignoring this spatial correlation, or are limited by the destruction of fine textures for under-considering the correlation. In this paper, we present a novel method called LG-BPN for self-supervised real-world denoising, which takes the spatial correlation statistic into our network design for local detail restoration, and also brings the long-range dependencies modeling ability to previously CNN-based BSN methods. First, based on the correlation statistic, we propose a densely-sampled patch-masked convolution module. By taking more neighbor pixels with low noise correlation into account, we enable a denser local receptive field, preserving more useful information for enhanced fine structure recovery. Second, we propose a dilated Transformer block to allow distant context exploitation in BSN. This global perception addresses the intrinsic deficiency of BSN, whose receptive field is constrained by the blind spot requirement, which can not be fully resolved by the previous CNN-based BSNs. These two designs enable LG-BPN to fully exploit both the detailed structure and the global interaction in a blind manner. Extensive results on real-world datasets demonstrate the superior performance of our method. https://github.com/Wang-XIaoDingdd/LGBPN

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages18156-18165
Number of pages10
ISBN (Electronic)9798350301298
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Low-level vision

Fingerprint

Dive into the research topics of 'LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising'. Together they form a unique fingerprint.

Cite this