Learning Visual Prompt for Gait Recognition

Kang Ma, Ying Fu*, Chunshui Cao, Saihui Hou, Yongzhen Huang, Dezhi Zheng*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Gait, a prevalent and complex form of human motion, plays a significant role in the field of long-range pedestrian retrieval due to the unique characteristics inherent in individual motion patterns. However, gait recognition in real-world scenarios is challenging due to the limitations of capturing comprehensive cross-viewing and crossclothing data. Additionally, distractors such as occlusions, directional changes, and lingering movements further complicate the problem. The widespread application of deep learning techniques has led to the development of various potential gait recognition methods. However, these methods utilize convolutional networks to extract shared information across different views and attire conditions. Once trained, the parameters and non-linear function become constrained to fixed patterns, limiting their adaptability to various distractors in real-world scenarios. In this paper, we present a unified gait recognition framework to extract global motion patterns and develop a novel dynamic transformer to generate representative gait features. Specifically, we develop a trainable part-based prompt pool with numerous key-value pairs that can dynamically select prompt templates to incorporate into the gait sequence, thereby providing task-relevant shared knowledge information. Furthermore, we specifically design dynamic attention to extract robust motion patterns and address the length generalization issue. Extensive experiments on four widely recognized gait datasets, i.e., Gait3D, GREW, OUMVLP, and CASIA-B, reveal that the proposed method yields substantial improvements compared to current state-of-the-art approaches.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages593-603
Number of pages11
ISBN (Electronic)9798350353006
DOIs
Publication statusPublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Fingerprint

Dive into the research topics of 'Learning Visual Prompt for Gait Recognition'. Together they form a unique fingerprint.

Cite this