TY - GEN
T1 - Learning to generate video object segment proposals
AU - Li, Jianwu
AU - Zhou, Tianfei
AU - Lu, Yao
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/28
Y1 - 2017/8/28
N2 - This paper proposes a fully automatic pipeline to generate accurate object segment proposals in realistic videos. Our approach first detects generic object proposals for all video frames and then learns to rank them using a Convolutional Neural Networks (CNN) descriptor built on appearance and motion cues. The ambiguity of the proposal set can be reduced while the quality can be retained as highly as possible Next, high-scoring proposals are greedily tracked over the entire sequence into distinct tracklets. Observing that the proposal tracklet set at this stage is noisy and redundant, we perform a tracklet selection scheme to suppress the highly overlapped tracklets, and detect occlusions based on appearance and location information. Finally, we exploit holistic appearance cues for refinement of video segment proposals to obtain pixel-accurate segmentation. Our method is evaluated on two video segmentation datasets i.e. SegTrack v1 and FBMS-59 and achieves competitive results in comparison with other state-of-the-art methods.
AB - This paper proposes a fully automatic pipeline to generate accurate object segment proposals in realistic videos. Our approach first detects generic object proposals for all video frames and then learns to rank them using a Convolutional Neural Networks (CNN) descriptor built on appearance and motion cues. The ambiguity of the proposal set can be reduced while the quality can be retained as highly as possible Next, high-scoring proposals are greedily tracked over the entire sequence into distinct tracklets. Observing that the proposal tracklet set at this stage is noisy and redundant, we perform a tracklet selection scheme to suppress the highly overlapped tracklets, and detect occlusions based on appearance and location information. Finally, we exploit holistic appearance cues for refinement of video segment proposals to obtain pixel-accurate segmentation. Our method is evaluated on two video segmentation datasets i.e. SegTrack v1 and FBMS-59 and achieves competitive results in comparison with other state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85030227988&partnerID=8YFLogxK
U2 - 10.1109/ICME.2017.8019535
DO - 10.1109/ICME.2017.8019535
M3 - Conference contribution
AN - SCOPUS:85030227988
T3 - Proceedings - IEEE International Conference on Multimedia and Expo
SP - 787
EP - 792
BT - 2017 IEEE International Conference on Multimedia and Expo, ICME 2017
PB - IEEE Computer Society
T2 - 2017 IEEE International Conference on Multimedia and Expo, ICME 2017
Y2 - 10 July 2017 through 14 July 2017
ER -