Learning Temporal Consistency for Low Light Video Enhancement from Single Images

Fan Zhang, Yu Li, Shaodi You, Ying Fu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

105 Citations (Scopus)

Abstract

Single image low light enhancement is an important task and it has many practical applications. Most existing methods adopt a single image approach. Although their performance is satisfying on a static single image, we found, however, they suffer serious temporal instability when handling low light videos. We notice the problem is because existing data-driven methods are trained from single image pairs where no temporal information is available. Unfortunately, training from real temporally consistent data is also problematic because it is impossible to collect pixel-wisely paired low and normal light videos under controlled environments in large scale and diversities with noise of identical statistics. In this paper, we propose a novel method to enforce the temporal stability in low light video enhancement with only static images. The key idea is to learn and infer motion field (optical flow) from a single image and synthesize short range video sequences. Our strategy is general and can extend to large scale datasets directly. Based on this idea, we propose our method which can infer motion prior for single image low light video enhancement and enforce temporal consistency. Rigorous experiments and user study demonstrate the state-of-the-art performance of our proposed method. Our code and model will be publicly available at https://github.com/zkawfanx/StableLLVE.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages4965-4974
Number of pages10
ISBN (Electronic)9781665445092
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Fingerprint

Dive into the research topics of 'Learning Temporal Consistency for Low Light Video Enhancement from Single Images'. Together they form a unique fingerprint.

Cite this