Learning-based ensemble average propagator estimation

Chuyang Ye*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable q-space sampling, and observed promising results compared with the conventional EAP estimation method.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditorsMaxime Descoteaux, Simon Duchesne, Alfred Franz, Pierre Jannin, D. Louis Collins, Lena Maier-Hein
PublisherSpringer Verlag
Pages593-601
Number of pages9
ISBN (Print)9783319661810
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 11 Sept 201713 Sept 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10433 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period11/09/1713/09/17

Keywords

  • Diffusion MRI
  • EAP
  • Learning-base estimation

Fingerprint

Dive into the research topics of 'Learning-based ensemble average propagator estimation'. Together they form a unique fingerprint.

Cite this