TY - GEN
T1 - Learning-based ensemble average propagator estimation
AU - Ye, Chuyang
N1 - Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2017
Y1 - 2017
N2 - By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable q-space sampling, and observed promising results compared with the conventional EAP estimation method.
AB - By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable q-space sampling, and observed promising results compared with the conventional EAP estimation method.
KW - Diffusion MRI
KW - EAP
KW - Learning-base estimation
UR - http://www.scopus.com/inward/record.url?scp=85029393198&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-66182-7_68
DO - 10.1007/978-3-319-66182-7_68
M3 - Conference contribution
AN - SCOPUS:85029393198
SN - 9783319661810
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 593
EP - 601
BT - Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
A2 - Descoteaux, Maxime
A2 - Duchesne, Simon
A2 - Franz, Alfred
A2 - Jannin, Pierre
A2 - Collins, D. Louis
A2 - Maier-Hein, Lena
PB - Springer Verlag
T2 - 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Y2 - 11 September 2017 through 13 September 2017
ER -