Latent smooth skeleton embedding

Li Wang, Qi Mao, Ivor W. Tsang

Research output: Contribution to conferencePaperpeer-review

5 Citations (Scopus)

Abstract

Learning a smooth skeleton in a low-dimensional space from noisy data becomes important in computer vision and computational biology. Existing methods assume that the manifold constructed from the data is smooth, but they lack the ability to model skeleton structures from noisy data. To overcome this issue, we propose a novel probabilistic structured learning model to learn the density of latent embedding given high-dimensional data and its neighborhood graph. The embedded points that form a smooth skeleton structure are obtained by maximum a posteriori (MAP) estimation. Our analysis shows that the resulting similarity matrix is sparse and unique, and its associated kernel has eigenvalues that follow a power law distribution, which leads to the embeddings of a smooth skeleton. The model is extended to learn a sparse similarity matrix when the graph structure is unknown. Extensive experiments demonstrate the effectiveness of the proposed methods on various datasets by comparing them with existing methods.

Original languageEnglish
Pages2703-2709
Number of pages7
Publication statusPublished - 2017
Externally publishedYes
Event31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States
Duration: 4 Feb 201710 Feb 2017

Conference

Conference31st AAAI Conference on Artificial Intelligence, AAAI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/02/1710/02/17

Fingerprint

Dive into the research topics of 'Latent smooth skeleton embedding'. Together they form a unique fingerprint.

Cite this