Large-scale fabrication of a durable and self-healing super-hydrophobic coating with high thermal stability and long-term corrosion resistance

Dawei Li, Liangji Ma, Bo Zhang, Shaohua Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Durability is a crucial feature to expand the application field of artificial superhydrophobic coatings. Herein, a kind of durable superhydrophobic coating is prepared by a simple and cheap method using a fluorine-free suspension as the raw material, which consists of epoxy modified silicone resin (MSR), functionalized SiO2, GO, and lamellar mica powder (MP). The MSR@SiO2 + GO + MP coating shows outstanding surface wettability with a water contact angle of 163.8°, a low sliding angle of 3.5° and the microdroplet adhesive force of about 12.6 ± 0.5 µN. Furthermore, it can withstand alternating high and low temperatures, intense UV radiation for 7 days, strong chemical attack, and various mechanical durability tests. In addition, the coating also exhibits a significantly repairable ability to resist O2 plasma etching, and outstanding self-cleaning both in air and oil even after mechanical damage. The mechanism for the influence of the multiple hybridizations on the long-term corrosion stability and thermal-related properties of the superhydrophobic coating is further systematically studied. The simple method and superhydrophobic coating should have good application prospects in large area protection.

Original languageEnglish
Pages (from-to)7810-7821
Number of pages12
JournalNanoscale
Volume13
Issue number16
DOIs
Publication statusPublished - 28 Apr 2021

Fingerprint

Dive into the research topics of 'Large-scale fabrication of a durable and self-healing super-hydrophobic coating with high thermal stability and long-term corrosion resistance'. Together they form a unique fingerprint.

Cite this