Laminated ammonium perchlorate-based composite prepared by ice-template freezing-induced assembly

Peng Deng, Qingjie Jiao, Hui Ren*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Abstract: In this work, laminated ammonium perchlorate-based composite (LAPC) with high thermal decomposition performance was prepared by ice-template freezing-induced assembly strategy. Cobalt-Konjac glucomannan (Co2+-KGM) hydrosol with rich AP embedded was designed and used as a frozen precursor. LAPC was obtained from the ice-template freezing of the hydrosol precursor and crystallization of AP molecules. The structure and morphology of as-obtained composite were characterized, and the thermal decomposition performances were investigated. The results showed that LAPC materials have micro-/nano-lamellar structures with the thickness size of 20 μm, which are composed of AP micro-/nanoparticles formed in the freezing crystalline progress and uniformly dispersed Co2+-KGM coated on the surface and inside of the micro-/nanoparticles. Thermal analysis results show that LAPC-2 has a lower decomposition temperature than raw AP, which have decreased by 114.3 °C. The activation energy of LAPC-2 thermal decomposition was reduced by 87 kJ/mol from 200 kJ/mol of AP to 113 kJ/mol of LAPC-2. A possible catalytic mechanism of thermal decomposition of LAPC is proposed. Under heating condition, the Co2+-KGM molecules firstly decomposed, and Co-based oxides can be in situ generated on the surface and inside of AP particles, resulting in enhancing the catalytic contact areas. Abundant distributed nanoscale Co-based oxides boosted the thermal decomposition of AP and exhibited excellent catalytic performances. Graphic abstract: [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)2077-2087
Number of pages11
JournalJournal of Materials Science
Volume56
Issue number3
DOIs
Publication statusPublished - 1 Jan 2021

Fingerprint

Dive into the research topics of 'Laminated ammonium perchlorate-based composite prepared by ice-template freezing-induced assembly'. Together they form a unique fingerprint.

Cite this