Iterative Denoiser and Noise Estimator for Self-Supervised Image Denoising

Yunhao Zou, Chenggang Yan, Ying Fu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

With the emergence of powerful deep learning tools, more and more effective deep denoisers have advanced the field of image denoising. However, the huge progress made by these learning-based methods severely relies on large-scale and high-quality noisy/clean training pairs, which limits the practicality in real-world scenarios. To overcome this, researchers have been exploring self-supervised approaches that can denoise without paired data. However, the unavailable noise prior and inefficient feature extraction take these methods away from high practicality and precision. In this paper, we propose a Denoise-Corrupt-Denoise pipeline (DCD-Net) for self-supervised image denoising. Specifically, we design an iterative training strategy, which iteratively optimizes the denoiser and noise estimator, and gradually approaches high denoising performances using only single noisy images without any noise prior. The proposed self-supervised image denoising framework provides very competitive results compared with state-of-the-art methods on widely used synthetic and real-world image denoising benchmarks.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13219-13228
Number of pages10
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Iterative Denoiser and Noise Estimator for Self-Supervised Image Denoising'. Together they form a unique fingerprint.

Cite this