Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells

Ran Wang, Hong Qing, Xiao Qian Liu, Xiao Lin Zheng, Yu Lin Deng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 20
  • Captures
    • Readers: 16
see details

Abstract

Objective: The selective loss of dopaminergic neurons in Parkinson's disease is suspected to correlate with the increase of cellular iron, which may be involved in the pathogenesis of PD by promotion of oxidative stress. This research investigated dopamine-induced oxidative stress toxicity contributed by iron and the production of dopamine-derived neurotoxins in dopaminergic SH-SY5Y cells. Methods: After the SH-SY5Y cells were pre-incubated with dopamine and Fe2+ for 24 h, the cell viability, hydroxyl radical, melondialdehyde, cell apoptosis, and catechol isoquinolines were measured by lactate dehydrogenase assay, salicylic acid trapping method, thiobarbuteric acid assay, Hoechst 33258 staining and HPLC-electrochemical detection (HPLC-ECD), respectively. Results (1) Optimal dopamine (150 μmol/L) and Fe2+ (40 or 80 μmol/L) significantly increased the concentrations of hydroxy radicals and melondialdehyde in SH-SY5Y cells. (2) Induction with dopamine alone or dopamine and Fe2+ (dopamine/Fe2+) caused cell apoptosis. (3) Compared with untreated cells, the catechol isoquinolines, salsolinol and N-methyl-salsolinol in dopamine/Fe2+-induced cells were detected in increasing amounts. Conclusion: Due to dopamine/Fe 2+-induced oxidative stress similar to the state in the parkinsonian substantia nigra neurons, dopamine and Fe2+ impaired SH-SY5Y cells could be used as the cell oxidative stress model of Parkinson's disease. The catechol isoquinolines detected in cells may be involved in the pathogenesis of Parkinson's disease as potential neurotoxins.

Original languageEnglish
Pages (from-to)125-132
Number of pages8
JournalNeuroscience Bulletin
Volume24
Issue number3
DOIs
Publication statusPublished - Jun 2008

Keywords

  • Dopamine
  • Fe
  • N-methyl-salsolinol
  • Oxidative stress
  • Parkinson's disease
  • Salsolinol

Fingerprint

Dive into the research topics of 'Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells'. Together they form a unique fingerprint.

Cite this

Wang, R., Qing, H., Liu, X. Q., Zheng, X. L., & Deng, Y. L. (2008). Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells. Neuroscience Bulletin, 24(3), 125-132. https://doi.org/10.1007/s12264-008-1214-z