Abstract
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 AmgIr−1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3 AmgIr−1). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 764-772 |
Number of pages | 9 |
Journal | Nature Chemistry |
Volume | 12 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Aug 2020 |
Externally published | Yes |