TY - JOUR
T1 - iPiDA-SWGCN
T2 - Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network
AU - Hou, Jialu
AU - Wei, Hang
AU - Liu, Bin
N1 - Publisher Copyright:
© 2023 Hou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/6
Y1 - 2023/6
N2 - Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-disease association network and the Boolean representation of piRNA-disease associations ignoring the confidence coefficients. In this study, we propose a supplementarily weighted strategy to solve these disadvantages. Combined with Graph Convolutional Networks (GCNs), a novel predictor called iPiDA-SWGCN is proposed for piRNA-disease association prediction. There are three main contributions of iPiDA-SWGCN: (i) Potential piRNA-disease associations are preliminarily supplemented in the sparse piRNA-disease network by integrating various basic predictors to enrich network structure information. (ii) The original Boolean piRNA-disease associations are assigned with different relevance confidence to learn node representations from neighbour nodes in varying degrees. (iii) The experimental results show that iPiDA-SWGCN achieves the best performance compared with the other state-of-the-art methods, and can predict new piRNA-disease associations.
AB - Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-disease association network and the Boolean representation of piRNA-disease associations ignoring the confidence coefficients. In this study, we propose a supplementarily weighted strategy to solve these disadvantages. Combined with Graph Convolutional Networks (GCNs), a novel predictor called iPiDA-SWGCN is proposed for piRNA-disease association prediction. There are three main contributions of iPiDA-SWGCN: (i) Potential piRNA-disease associations are preliminarily supplemented in the sparse piRNA-disease network by integrating various basic predictors to enrich network structure information. (ii) The original Boolean piRNA-disease associations are assigned with different relevance confidence to learn node representations from neighbour nodes in varying degrees. (iii) The experimental results show that iPiDA-SWGCN achieves the best performance compared with the other state-of-the-art methods, and can predict new piRNA-disease associations.
UR - http://www.scopus.com/inward/record.url?scp=85164229621&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1011242
DO - 10.1371/journal.pcbi.1011242
M3 - Article
C2 - 37339125
AN - SCOPUS:85164229621
SN - 1553-734X
VL - 19
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 6 June
M1 - e1011242
ER -